Population biology of cytoplasmic incompatibility: maintenance and spread of Cardinium symbionts in a parasitic wasp.
نویسندگان
چکیده
Bacteria that cause cytoplasmic incompatibility (CI) are perhaps the most widespread parasites of arthropods. CI symbionts cause reproductive failure when infected males mate with females that are either uninfected or infected with a different, incompatible strain. Until recently, CI was known to be caused only by the alpha-proteobacterium Wolbachia. Here we present the first study of the population biology of Cardinium, a recently discovered symbiont in the Bacteroidetes that causes CI in the parasitic wasp Encarsia pergandiella (Hymenoptera: Aphelinidae). Cardinium occurs at high frequency ( approximately 92%) in the field. Using wasps that were recently collected in the field, we measured parameters that are crucial for understanding how CI spreads and is maintained in its host. CI Cardinium exhibits near-perfect rates of maternal transmission, causes a strong reduction in viable offspring in incompatible crosses, and induces a high fecundity cost, with infected females producing 18% fewer offspring in the first 4 days of reproduction. We found no evidence for paternal transmission or horizontal transmission of CI Cardinium through parasitism of an infected conspecific. No evidence for cryptic parthenogenesis in infected females was found, nor was sex allocation influenced by infection. We incorporated our laboratory estimates into a model of CI dynamics. The model predicts a high stable equilibrium, similar to what we observed in the field. Interestingly, our model also predicts a high threshold frequency of CI invasion (20% for males and 24% for females), below which the infection is expected to be lost. We consider how this threshold may be overcome, focusing in particular on the sensitivity of CI models to fecundity costs. Overall our results suggest that the factors governing the dynamics of CI Wolbachia and Cardinium are strikingly similar.
منابع مشابه
Distribution of the bacterial symbiont Cardinium in arthropods.
Abstract 'Candidatus Cardinium', a recently described bacterium from the Bacteroidetes group, is involved in diverse reproduction alterations of its arthropod hosts, including cytoplasmic incompatibility, parthenogenesis and feminization. To estimate the incidence rate of Cardinium and explore the limits of its host range, 99 insect and mite species were screened, using primers designed to ampl...
متن کاملComparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium hertigii
Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on...
متن کاملTranscriptome Sequencing Reveals Novel Candidate Genes for Cardinium hertigii-Caused Cytoplasmic Incompatibility and Host-Cell Interaction
Cytoplasmic incompatibility (CI) is an intriguing, widespread, symbiont-induced reproductive failure that decreases offspring production of arthropods through crossing incompatibility of infected males with uninfected females or with females infected with a distinct symbiont genotype. For years, the molecular mechanism of CI remained unknown. Recent genomic, proteomic, biochemical, and cell bio...
متن کاملSex affects the infection frequencies of symbionts in Bemisia tabaci
While biotype, host plant and geographical location are known to affect the infection dynamics of the six secondary symbionts (S-symbionts) including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea in Bemisia tabaci, it remains unclear whether sex of B. tabaci has an impact on the infection frequencies of the six S-symbionts. To address this issue, gene-specific PCR w...
متن کاملECOLOGY AND POPULATION BIOLOGY Assessments of Fitness Effects by the Facultative Symbiont Rickettsia in the Sweetpotato Whitefly (Hemiptera: Aleyrodidae)
The sweet potato whiteßy, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), harbors several bacterial symbionts, including the obligate primary symbiont Portiera aleyrodidarum and the facultative secondary symbionts Arsenophonus, Cardinium, Fritschea,Hamiltonella, Rickettsia, and Wolbachia. The roles of these symbionts are yet unknown. In this study, we tested for possible effects of one sym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 178 2 شماره
صفحات -
تاریخ انتشار 2008